
Event Handling

Produced

by:

Mouse Events

Department of Computing and Mathematics

What is an event?

“An action such as a key being pressed,

the mouse moving, or

a new piece of data becoming available to read.

An event interrupts the normal

flow of a program to

run the code within an event block”

(Reas & Fry, 2014)

Mouse Events

Mouse Variables Description

mousePressed

true if any mouse button is pressed, false
otherwise.

Note: this variable reverts to false as soon
as the button is released.

mouseButton

Can have the value LEFT, RIGHT and
CENTER, depending on the mouse button
most recently pressed.

Note: this variable retains its value until a
different mouse button is pressed.

Mouse Events

• Mouse and keyboard events only work when a
program has draw().

• Without draw(), the code is only run once and
then stops listening for events.

Source: https://processing.org/reference/

Processing Example 6.1

• Functionality:

– If the mouse is pressed,
draw a gray square with a
white outline.

– Otherwise draw a gray circle
with a white outline.

Processing Example 6.1 - Code

void setup() {

 size(100,100);

} void draw() {

 background(0);

 stroke(255);

 fill(128);

 if (mousePressed){

 rect(45,45,34,34);

 }

 else{

 ellipse(45,45,34,34);

 }

}
Source: Reas & Fry (2014)

Processing Example 6.2

• Functionality:

– If the mouse is pressed, set
the fill to white and draw a
square.

– Otherwise set the fill to
black and draw a square.

Processing Example 6.2

void setup() {

 size(100,100);

} void draw() {

 background(204);

 if (mousePressed == true)

 {

 fill(255); // white

 } else {

 fill(0); // black

 }

 rect(25, 25, 50, 50);

}

Source: Reas & Fry (2014)

Processing Example 6.3

• Functionality:

– If the LEFT button on the mouse is pressed,
set the fill to black and draw a square. As
soon as the LEFT button is released, gray fill
the square.

– If the RIGHT button on the mouse is pressed,

set the fill to white and draw a square. As
soon as the RIGHT button is released, gray fill
the square.

– If no mouse button is pressed, set the fill to
gray and draw a square.

Processing Example 6.3

void setup() {

 size(100,100);

} void draw() {

 if (mousePressed){

 if (mouseButton == LEFT)

 fill(0); // black

 else if (mouseButton == RIGHT)

 fill(255); // white

 }

 else {

 fill(126); // gray

 }

 rect(25, 25, 50, 50);

}
Source: Reas & Fry (2014)

Processing Example 6.4

• Functionality:
– Draw a circle on the mouse (x,y)

coordinates.

– Each time you move the mouse, draw a
new circle.

– All the circles remain in the sketch until
you press a mouse button.

– When you press a mouse button, the
sketch is cleared and a single circle is
drawn at the mouse (x,y) coordinates.

Processing Example 6.4

void setup() {

 size(500,400);

 background(0);

}
void draw() {

 if (mousePressed) {

 background(0);

 }

 stroke(255);

 fill(45,45,45);

 ellipse(mouseX, mouseY, 100, 100);

}
https://processing.org/tutorials/interactivity/

Processing Example 6.4

void setup() {

 size(500,400);

 background(0);

 stroke(255);

 fill(45,45,45);

}

void draw() {

 if (mousePressed) {

 background(0);

 }

 ellipse(mouseX, mouseY, 100, 100);

}
https://processing.org/tutorials/interactivity/

We moved the stroke and fill function
calls to the setup() function.
Q: Does this change the functionality of
our sketch?

Questions?

References

• Reas, C. & Fry, B. (2014) Processing – A
Programming Handbook for Visual Designers
and Artists, 2nd Edition, MIT Press, London.

Department of Computing and Mathematics
http://www.wit.ie/

